41 research outputs found

    Ecosystemic Evolution Feeded by Smart Systems

    Get PDF
    Information Society is advancing along a route of ecosystemic evolution. ICT and Internet advancements, together with the progression of the systemic approach for enhancement and application of Smart Systems, are grounding such an evolution. The needed approach is therefore expected to evolve by increasingly fitting into the basic requirements of a significant general enhancement of human and social well-being, within all spheres of life (public, private, professional). This implies enhancing and exploiting the net-living virtual space, to make it a virtuous beneficial integration of the real-life space. Meanwhile, contextual evolution of smart cities is aiming at strongly empowering that ecosystemic approach by enhancing and diffusing net-living benefits over our own lived territory, while also incisively targeting a new stable socio-economic local development, according to social, ecological, and economic sustainability requirements. This territorial focus matches with a new glocal vision, which enables a more effective diffusion of benefits in terms of well-being, thus moderating the current global vision primarily fed by a global-scale market development view. Basic technological advancements have thus to be pursued at the system-level. They include system architecting for virtualization of functions, data integration and sharing, flexible basic service composition, and end-service personalization viability, for the operation and interoperation of smart systems, supporting effective net-living advancements in all application fields. Increasing and basically mandatory importance must also be increasingly reserved for human–technical and social–technical factors, as well as to the associated need of empowering the cross-disciplinary approach for related research and innovation. The prospected eco-systemic impact also implies a social pro-active participation, as well as coping with possible negative effects of net-living in terms of social exclusion and isolation, which require incisive actions for a conformal socio-cultural development. In this concern, speed, continuity, and expected long-term duration of innovation processes, pushed by basic technological advancements, make ecosystemic requirements stricter. This evolution requires also a new approach, targeting development of the needed basic and vocational education for net-living, which is to be considered as an engine for the development of the related ‘new living know-how’, as well as of the conformal ‘new making know-how’

    ERMHAN: A Context-Aware Service Platform to Support Continuous Care Networks for Home-Based Assistance

    Get PDF
    Continuous care models for chronic diseases pose several technology-oriented challenges for home-based continuous care, where assistance services rely on a close collaboration among different stakeholders such as health operators, patient relatives, and social community members. Here we describe Emilia Romagna Mobile Health Assistance Network (ERMHAN) a multichannel context-aware service platform designed to support care networks in cooperating and sharing information with the goal of improving patient quality of life. In order to meet extensibility and flexibility requirements, this platform has been developed through ontology-based context-aware computing and a service oriented approach. We also provide some preliminary results of performance analysis and user survey activity

    A Service-Oriented Approach for Network-Centric Data Integration and Its Application to Maritime Surveillance

    Get PDF
    Maritime-surveillance operators still demand for an integrated maritime picture better supporting international coordination for their operations, as looked for in the European area. In this area, many data-integration efforts have been interpreted in the past as the problem of designing, building and maintaining huge centralized repositories. Current research activities are instead leveraging service-oriented principles to achieve more flexible and network-centric solutions to systems and data integration. In this direction, this article reports on the design of a SOA platform, the Service and Application Integration (SAI) system, targeting novel approaches for legacy data and systems integration in the maritime surveillance domain. We have developed a proof-of-concept of the main system capabilities to assess feasibility of our approach and to evaluate how the SAI middleware architecture can fit application requirements for dynamic data search, aggregation and delivery in the distributed maritime domain

    Context-based energy disaggregation in smart homes

    Get PDF
    In this paper, we address the problem of energy conservation and optimization in residential environments by providing users with useful information to solicit a change in consumption behavior. Taking care to highly limit the costs of installation and management, our work proposes a Non-Intrusive Load Monitoring (NILM) approach, which consists of disaggregating the whole-house power consumption into the individual portions associated to each device. State of the art NILM algorithms need monitoring data sampled at high frequency, thus requiring high costs for data collection and management. In this paper, we propose an NILM approach that relaxes the requirements on monitoring data since it uses total active power measurements gathered at low frequency (about 1 Hz). The proposed approach is based on the use of Factorial Hidden Markov Models (FHMM) in conjunction with context information related to the user presence in the house and the hourly utilization of appliances. Through a set of tests, we investigated how the use of these additional context-awareness features could improve disaggregation results with respect to the basic FHMM algorithm. The tests have been performed by using Tracebase, an open dataset made of data gathered from real home environments

    2-D spatial distribution of rainfall rate through combined use of radar reflectivity and rain gauge data

    Get PDF
    International audienceThis paper describes and comments the results obtained applying a data processing method to a joint set of radar and a rain gauge data for estimating the 2-D rainfall field at ground averaged over a given observation time T and over a radar coverage area that includes a rain gauge network. The estimate of the rainfall field is based on the processing of a data set composed by rain gauge and horizontal reflectivity radar data gathered during a rainfall phenomenon. The procedure has been tested on an experimental data set collected in Tuscany in 1999

    Context-based energy disaggregation in smart homes

    Get PDF
    In this paper, we address the problem of energy conservation and optimization in residential environments by providing users with useful information to solicit a change in consumption behavior. Taking care to highly limit the costs of installation and management, our work proposes a Non-Intrusive Load Monitoring (NILM) approach, which consists of disaggregating the whole-house power consumption into the individual portions associated to each device. State of the art NILM algorithms need monitoring data sampled at high frequency, thus requiring high costs for data collection and management. In this paper, we propose an NILM approach that relaxes the requirements on monitoring data since it uses total active power measurements gathered at low frequency (about 1 Hz). The proposed approach is based on the use of Factorial Hidden Markov Models (FHMM) in conjunction with context information related to the user presence in the house and the hourly utilization of appliances. Through a set of tests, we investigated how the use of these additional context-awareness features could improve disaggregation results with respect to the basic FHMM algorithm. The tests have been performed by using Tracebase, an open dataset made of data gathered from real home environments

    Appliance Recognition in an OSGi-based Home Energy Management Gateway

    Get PDF
    The rational use and management of energy is considered a key societal and technological challenge. Home energy management systems (HEMS) have been introduced especially in private home domains to support users in managing and controlling energy consuming devices. Recent studies have shown that informing users about their habits with appliances as well as their usage pattern can help to achieve energy reduction in private households. This requires instruments able to monitor energy consumption at fine grain level and provide this information to consumers. While the most existing approaches for load disaggregation and classification require high-frequency monitoring data, in this paper we propose an approach that exploits low-frequency monitoring data gathered by meters (i.e., Smart Plugs) displaced in the home. Moreover, while the most existing works dealing with appliance classification delegate the classification task to a remote central server, we propose a distributed approach where data processing and appliance recognition are performed locally in the Home Gateway. Our approach is based on a distributed load monitoring system made of Smart Plugs attached to devices and connected to a Home Gateway via the ZigBee protocol. The Home Gateway is based on the OSGi platform, collects data from home devices, and hosts both data processing and user interaction logic
    corecore